module Complex: sig .. end
Complex numbers.
    This module provides arithmetic operations on complex numbers.
    Complex numbers are represented by their real and imaginary parts
    (cartesian representation).  Each part is represented by a
    double-precision floating-point number (type float).
type t = {
}
The type of complex numbers.  re is the real part and im the
    imaginary part.
 
 
val zero : t
The complex number 0.
 
 
val one : t
The complex number 1.
 
 
val i : t
The complex number i.
 
 
val neg : t -> t
Unary negation.
 
 
val conj : t -> t
Conjugate: given the complex x + i.y, returns x - i.y.
 
 
val add : t -> t -> t
Addition
 
 
val sub : t -> t -> t
Subtraction
 
 
val mul : t -> t -> t
Multiplication
 
 
val inv : t -> t
Multiplicative inverse (1/z).
 
 
val div : t -> t -> t
Division
 
 
val sqrt : t -> t
Square root.  The result x + i.y is such that x > 0 or
    x = 0 and y >= 0.
    This function has a discontinuity along the negative real axis.
 
 
val norm2 : t -> float
Norm squared: given x + i.y, returns x^2 + y^2.
 
 
val norm : t -> float
Norm: given x + i.y, returns sqrt(x^2 + y^2).
 
 
val arg : t -> float
Argument.  The argument of a complex number is the angle
    in the complex plane between the positive real axis and a line
    passing through zero and the number.  This angle ranges from
    -pi to pi.  This function has a discontinuity along the
    negative real axis.
 
 
val polar : float -> float -> t
polar norm arg returns the complex having norm norm
    and argument arg.
 
 
val exp : t -> t
Exponentiation.  exp z returns e to the z power.
 
 
val log : t -> t
Natural logarithm (in base e).
 
 
val pow : t -> t -> t
Power function.  pow z1 z2 returns z1 to the z2 power.